¿Cuándo estar satisfecho con el presente y dejar de buscar en el futura algo posiblemente mejor?

J.Correa ¹. R. Saona ¹. B. Ziliotto ²

¹Universidad de Chile

²CEREMADE, CNRS, Université Paris Dauphine, PSL University, Paris, France

Comprando un pasaje de avión

Consejos básicos:

- Buscar pasajes sólo en modo incógnito
- Ser flexible con las fechas
- 3 Borrar el historial antes de realizar la búsqueda
- **4** ...

Algunos hechos:

- Lexis-Nexis, una compañía proveedora de datos en línea, vende a precios distintos para cada uno de sus usuarios.
- Orbitz, una agencia de viajes en línea, descubrió que la gente que usa computadores Mac gastan hasta un 30% más en hoteles.

A una jugadora se le presenta una serie de números, que son revelados uno a uno. Ella debe elegir sólo uno y puede escogerlo sólo en el momento en que fue revelado.

1 Te dan a conocer F_1, \ldots, F_n distribuciones

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ
 - Te muestran $(V_{\sigma_1(\omega)}(\omega), \sigma_1(\omega))$ y , con $V_{\sigma_1} \sim F_{\sigma_1}$ ¿lo tomas o lo dejas?

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ
 - Te muestran $(V_{\sigma_1(\omega)}(\omega), \sigma_1(\omega))$ y , con $V_{\sigma_1} \sim F_{\sigma_1}$ ¿lo tomas o lo dejas?
 - **2** Te muestran $(V_{\sigma_2(\omega)}(\omega), \sigma_2(\omega))$, con $V_{\sigma_2} \sim F_{\sigma_2}$; lo tomas o lo dejas?

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ
 - Te muestran $(V_{\sigma_1(\omega)}(\omega), \sigma_1(\omega))$ y , con $V_{\sigma_1} \sim F_{\sigma_1}$ ¿lo tomas o lo dejas?
 - **2** Te muestran $(V_{\sigma_2(\omega)}(\omega), \sigma_2(\omega))$, con $V_{\sigma_2} \sim F_{\sigma_2}$; lo tomas o lo dejas?
 - **③** ...

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- ② Considera un orden aleatorio de n elementos, σ
 - Te muestran $(V_{\sigma_1(\omega)}(\omega), \sigma_1(\omega))$ y , con $V_{\sigma_1} \sim F_{\sigma_1}$ ¿lo tomas o lo dejas?
 - **2** Te muestran $(V_{\sigma_2(\omega)}(\omega), \sigma_2(\omega))$, con $V_{\sigma_2} \sim F_{\sigma_2}$ ¿lo tomas o lo dejas?
 - **③** ...
- **3** Tu objetivo es maximizar la esperanza del elemento (aleatorio) que tomas, donde V_1, \ldots, V_n son independientes y positivas.

1 Te dan a conocer F_1, \ldots, F_n distribuciones

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ
 - Te enfrentas con el comprador $\sigma_1(\omega)$ con valoración privada $V_{\sigma_1}(\omega)$, con $V_{\sigma_1} \sim F_{\sigma_1}$. Pero dice que lo valora en b_{σ_1} . ¿qué precio le ofreces?

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ
 - Te enfrentas con el comprador $\sigma_1(\omega)$ con valoración privada $V_{\sigma_1}(\omega)$, con $V_{\sigma_1} \sim F_{\sigma_1}$. Pero dice que lo valora en b_{σ_1} . ¿qué precio le ofreces?
 - ② Si te rechaaron, te enfrentas con el comprador $\sigma_2(\omega)$ con valoración privada $V_{\sigma_2}(\omega)$, con $V_{\sigma_2} \sim F_{\sigma_2}$. Pero dice que lo valora en b_{σ_2} .
 - ¿qué precio le ofreces?

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ
 - Te enfrentas con el comprador $\sigma_1(\omega)$ con valoración privada $V_{\sigma_1}(\omega)$, con $V_{\sigma_1} \sim F_{\sigma_1}$. Pero dice que lo valora en b_{σ_1} . ¿qué precio le ofreces?
 - ② Si te rechaaron, te enfrentas con el comprador $\sigma_2(\omega)$ con valoración privada $V_{\sigma_2}(\omega)$, con $V_{\sigma_2} \sim F_{\sigma_2}$. Pero dice que lo valora en b_{σ_2} . ¿qué precio le ofreces?
 - **⑥** ...

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ
 - Te enfrentas con el comprador $\sigma_1(\omega)$ con valoración privada $V_{\sigma_1}(\omega)$, con $V_{\sigma_1} \sim F_{\sigma_1}$. Pero dice que lo valora en b_{σ_1} . ¿qué precio le ofreces?
 - ② Si te rechaaron, te enfrentas con el comprador $\sigma_2(\omega)$ con valoración privada $V_{\sigma_2}(\omega)$, con $V_{\sigma_2} \sim F_{\sigma_2}$. Pero dice que lo valora en b_{σ_2} . ¿qué precio le ofreces?
 - **3** ...
- 3 Tu objetivo es maximizar la esperanza de la venta.

Dinámica propuesta, ¿a qué me comparo?

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ
 - Te muestran $(V_{\sigma_1(\omega)}(\omega), \sigma_1(\omega))$ y , con $V_{\sigma_1} \sim F_{\sigma_1}$ ¿lo tomas o lo dejas?
 - **2** Te muestran $(V_{\sigma_2(\omega)}(\omega), \sigma_2(\omega))$, con $V_{\sigma_2} \sim F_{\sigma_2}$ ¿lo tomas o lo dejas?
 - **③** ..
- **3** Tu objetivo es maximizar la esperanza del elemento (aleatorio) que tomas, donde V_1, \ldots, V_n son independientes y positivas.

Dinámica propuesta, ¿a qué me comparo?

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ
 - Te muestran $(V_{\sigma_1(\omega)}(\omega), \sigma_1(\omega))$ y , con $V_{\sigma_1} \sim F_{\sigma_1}$ ¿lo tomas o lo dejas?
 - **2** Te muestran $(V_{\sigma_2(\omega)}(\omega), \sigma_2(\omega))$, con $V_{\sigma_2} \sim F_{\sigma_2}$ ¿lo tomas o lo dejas?
 - **③** ...
- 3 Tu objetivo es maximizar la esperanza del elemento (aleatorio) que tomas, donde V_1, \ldots, V_n son independientes y positivas.
- ¿Y qué si pudiera comparar todas las ofertas antes de elegir?

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- 2 Considera un orden aleatorio de n elementos, σ
 - **1** Te enfrentas con el comprador $\sigma_1(\omega)$ con valoración privada $V_{\sigma_1}(\omega)$, con $V_{\sigma_1} \sim F_{\sigma_1}$. Pero dice que lo valora en b_{σ_1} . ¿qué precio le ofreces?
 - **2** Si te rechaaron, te enfrentas con el comprador $\sigma_2(\omega)$ con valoración privada $V_{\sigma_2}(\omega)$, con $V_{\sigma_2} \sim F_{\sigma_2}$. Pero dice que lo valora en b_{σ_2} .

 ¿ qué precio le ofreces?
 - **③** ...
- Tu objetivo es maximizar la esperanza de la venta.

- **1** Te dan a conocer F_1, \ldots, F_n distribuciones
- $oldsymbol{2}$ Considera un orden aleatorio de n elementos, σ
 - **1** Te enfrentas con el comprador $\sigma_1(\omega)$ con valoración privada $V_{\sigma_1}(\omega)$, con $V_{\sigma_1} \sim F_{\sigma_1}$. Pero dice que lo valora en b_{σ_1} . ¿qué precio le ofreces?
 - **2** Si te rechaaron, te enfrentas con el comprador $\sigma_2(\omega)$ con valoración privada $V_{\sigma_2}(\omega)$, con $V_{\sigma_2} \sim F_{\sigma_2}$. Pero dice que lo valora en b_{σ_2} . ¿qué precio le ofreces?
 - **③** ...
- 3 Tu objetivo es maximizar la esperanza de la venta.
- ¿Y qué si pudiera decidir con todos al mismo tiempo?

Mecanismos de remate

```
1 objeto, n compradores. Comprador i tiene una valoración v_i \in V,
```

pero dice que lo valora en b_i .

Un mecanismo (q, p) consiste en:

 $q: B_1 \times \ldots \times B_n \to \Delta_0([n])$, decidir quién se lleva el objeto.

 $p: B_1 \times \ldots \times B_n \to \mathbb{R}^n$, los pagos de todos los participantes.

Mecanismo óptimo

Asumiendo que $v_i \sim F_i$, el mecanismo que optimiza la ganancia del vendedor corresponde a la solución del siguiente problema.

$$(P) \left\{ \begin{array}{ll} \max_q & \int_{V^n} q_i(v) \left(v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}\right) f(v) dv \\ s.t. & q(v) \in \Delta_0([n]) \\ & \mathbb{E}_{v_{-i}}\left[q_i(\cdot, v_{-i})\right] \ node creciente. \end{array} \right.$$

Con esto, los compradores no miente y están dispuestos a participar.

¿Son los mismos problemas?

Tengo un ALG de precios secuenciales tal que

$$\frac{\mathbb{E}(\mathsf{ALG})}{\mathbb{E}(\mathsf{Myerson})} \geq c$$

Tengo un \overline{ALG} de aceptación secuencial tal que

$$\frac{\mathbb{E}(\overline{ALG})}{\mathbb{E}(\mathsf{max})} \geq c$$

¿Cuál es la mejor garantía?

• Aún no se sabe.

¿Cuál es la mejor garantía?

- Aún no se sabe.
- ② Hasta Octubre 2017, la mejor estrategia era: una exigencia fija en el tiempo, calculada al inicio del proceso $(c = 1 1/e \approx 0.63)$.

¿Cuál es la mejor garantía?

- Aún no se sabe.
- ② Hasta Octubre 2017, la mejor estrategia era: una exigencia fija en el tiempo, calculada al inicio del proceso $(c = 1 1/e \approx 0.63)$.
- **3** Hoy, el mejor resultado considera bajar las exigencias en el tiempo, $(c \approx 0.669)$.

• Fijemos la instancia F_1, \ldots, F_n y considera una exigencia fija τ tal que

$$\mathbb{P}(\max \leq \tau) = p.$$

• Fijemos la instancia F_1, \ldots, F_n y considera una exigencia fija τ tal que

$$\mathbb{P}(\max \leq \tau) = p.$$

2 Demostraremos que para todo $t \ge 0$

$$\mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$
.

• Fijemos la instancia F_1, \ldots, F_n y considera una exigencia fija τ tal que

$$\mathbb{P}(\max \leq \tau) = p.$$

2 Demostraremos que para todo $t \ge 0$

$$\mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$
.

Intregrando, por ser variables positivas,

$$\mathbb{E}(ALG) \geq c_p \mathbb{E}(\max)$$
.

• Fijemos la instancia F_1, \ldots, F_n y considera una exigencia fija τ tal que

$$\mathbb{P}(\max \leq \tau) = p.$$

2 Demostraremos que para todo $t \ge 0$

$$\mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$
.

Intregrando, por ser variables positivas,

$$\mathbb{E}(ALG) \geq c_p \mathbb{E}(\max)$$
.

1 Elegiremos p^* que maximiza c_p , obteniendo $c_{p^*} = 1 - 1/e \approx 0.63$.

$$\forall t \geq 0, \quad \mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$

$$\forall t \geq 0, \quad \mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$

① Si $t \leq \tau$, nuestra exigencia,

$$\begin{split} \mathbb{P}(ALG > t) &= \mathbb{P}(ALG > 0) \\ &= \mathbb{P}(\text{obtener algo}) \\ &= \mathbb{P}(\text{exista algo que obtener}) \\ &= \mathbb{P}(\text{max} > \tau) \\ &\geq (1 - \rho) \, \mathbb{P}(\text{max} > t) \, . \end{split}$$

$$\forall t \geq 0, \quad \mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$

① Si $t \leq \tau$, nuestra exigencia,

$$\begin{split} \mathbb{P}(ALG > t) &= \mathbb{P}(ALG > 0) \\ &= \mathbb{P}(\text{obtener algo}) \\ &= \mathbb{P}(\text{exista algo que obtener}) \\ &= \mathbb{P}(\max > \tau) \\ &\geq (1 - p) \, \mathbb{P}(\max > t) \, . \end{split}$$

② Por lo que, $\mathbb{P}(ALG > t) \ge (1 - p) \mathbb{P}(\max > t)$.

$$\forall t \geq 0, \quad \mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$

$$\forall t \geq 0, \quad \mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$

- Si $t \leq \tau$, $\mathbb{P}(ALG > t) \geq (1 p) \mathbb{P}(\max > t)$.
- \bigcirc Si $t > \tau$.

$$\mathbb{P}(ALG > t) = \sum_{i=1}^{n} \mathbb{P}(V_i > t | \text{tomé } V_i) \mathbb{P}(\text{tomar } V_i)$$
 $= \sum_{i=1}^{n} \frac{\mathbb{P}(V_i > t)}{\mathbb{P}(V_i > \tau)} \mathbb{P}(\text{tomar } V_i)$
 $= \sum_{i=1}^{n} \mathbb{P}(V_i > t) \mathbb{P}(\text{tomar } V_i | V_i > \tau)$
 $\geq \left(\frac{1-p}{-\ln p}\right) \sum_{i=1}^{n} \mathbb{P}(V_i > t)$
 $\geq \left(\frac{1-p}{-\ln p}\right) \mathbb{P}(\text{max} > t)$.

$$\forall t \geq 0, \quad \mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$

1 Si
$$t \leq \tau$$
, $\mathbb{P}(ALG > t) \geq (1 - p)\mathbb{P}(\max > t)$.

$$\forall t \geq 0, \quad \mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$

• Si
$$t \leq \tau$$
, $\mathbb{P}(ALG > t) \geq (1 - p) \mathbb{P}(\max > t)$.

3 Si
$$t > \tau$$
, $\mathbb{P}(ALG > t) \ge \left(\frac{1-p}{-\ln p}\right) \mathbb{P}(\max > t)$.

$$\forall t \geq 0, \quad \mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$

- Si $t \le \tau$, $\mathbb{P}(ALG > t) \ge (1 p) \mathbb{P}(\max > t)$.
- ② Si $t > \tau$, $\mathbb{P}(ALG > t) \ge \left(\frac{1-p}{-\ln p}\right)\mathbb{P}(\max > t)$.
- **3** Definimos $c_p := \min\{1-p, \left(\frac{1-p}{-\ln p}\right)\}$ e integrando,

$$\mathbb{E}(ALG) \geq c_p \mathbb{E}(\max)$$
.

$$\forall t \geq 0, \quad \mathbb{P}(ALG > t) \geq c_p \mathbb{P}(\max > t)$$

- Si $t \leq \tau$, $\mathbb{P}(ALG > t) \geq (1 p) \mathbb{P}(\max > t)$.
- ② Si $t > \tau$, $\mathbb{P}(ALG > t) \ge \left(\frac{1-p}{-\ln p}\right)\mathbb{P}(\max > t)$.
- **3** Definimos $c_p := \min\{1-p, \left(\frac{1-p}{-\ln p}\right)\}$ e integrando,

$$\mathbb{E}(ALG) \geq c_p \mathbb{E}(\max)$$
.

• Maximizando en p, obtenemos $p^* = 1/e$ y $c_p = 1 - 1/e$.

¿Preguntas?

Referencias

- J. Correa, R. Saona, B. Ziliotto, *Prophet Secretary Through Blind Strategies*, SODA 2019, to appear.
- Y. Azar, A. Chiplunkar, H. Kaplan, *Prophet Secretary:* Surpassing the 1-1/e Barrier, EC 2018.
- U. Krengel, L. Sucheston, *On semiamarts, amarts and processes with finite value*, Adv. in Probability, 4 (1978), pp. 197-266.